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We report the results from a detailed Monte Carlo study of dynamic concentration fluctuations of a
two-component grafted polymer “brush.” We compute the correlations at long length scales and their
associated characteristic relaxation times, which could be measured in a dynamic scattering experiment.
We find that the dynamic concentration fluctuations are dominated by in-plane contributions due to la-

teral chain fluctuations.

PACS number(s): 36.20.—r, 82.70.—y, 87.15.—v, 81.60.Jw

I. INTRODUCTION

A polymer “brush” consists of flexible chain molecules
of chemical length N, each with one end restricted to a
point in the plane z =0 and with monomers (of size a =5
A) restricted to the region z > 0; the resulting assembly is
immersed in a good solvent for the polymers [1,2]. If the
distance between chains D is less than the “Flory” radius
Ry of the chains under dilute good-solvent conditions,
then the chains will stretch to form a layer of thickness
h =~(a /D )*’3Na to minimize their free energy, as first dis-
cussed by Alexander [3] and de Gennes [4]. Current ex-
periments [5] have D~50 A and N=1000, yielding
h =1000 A. Polymers under such conditions are strongly
stretched, and have free energies per chain of =~ 10kT.

Under conditions where Ry <<h <<Na (Na is the max-
imum distance that the chains may be extended), fluctua-
tions in the local volume fraction occupied by the mono-
mer ¢(r) are characterized by a correlation length deter-
mined by the equilibrium correlation length in a system
of overlapping polymers under good solvent conditions
(semidilute solution) [6]: £=ad, >/*. Since the average
volume fraction is ¢,=Na’/D?’h, we have £E=D. At
scales larger than the distance between grafts, correla-
tions will be screened, and the chains behave like Gauss-
ian polymers, in a nonfluctuating inhomogeneous chemi-
cal potential that provides the force to stretch the chains
vertically. However, there are two long length scales at
which there remain correlations due to the connectivity of
the chains: these are (i) the typical vertical distance that
chains are extended over (h), and (ii) the typical distance
for lateral chain fluctuations R =(D /a)'/®N'/2a (the size
of a random walk of N/ny steps of distance D, where
ng=¢oD? is the number of chemical units in a correla-
tion volume).

In this paper, we discuss static and dynamic correla-
tions of grafted polymers. In Sec. II, we discuss how
correlations at long length scales may be related to a
scattering structure factor for a polymer layer composed
of two species of chains. In Sec. III, we present the re-
sults from Monte Carlo (MC) simulations of grafted poly-
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mers and identify the characteristic distances and times
associated with the static and dynamic correlations. The
static structure shows scaling behavior in agreement with
the theory of Alexander and de Gennes [3,4]. For poly-
mers that are not too strongly overlapped, the relaxation
scaling is described by a simple single-chain diffusive re-
laxation model. This appears to break down for strongly
overlapping polymers, and in Sec. IV, we argue that this
is due to chain entanglements. We conclude that entan-
glements prevent the relaxation process in the vertical
direction from ever having a longer characteristic time
than that of chain fluctuations from side to side.

II. CORRELATIONS IN A TWO-COMPONENT
POLYMER LAYER

In a single-component polymer layer, the length scale
R cannot be simply revealed since most scattering probes
couple to the total density contributed by all monomers.
However, in a polymer brush composed of fwo species of
chains (A4 and B), the long scales appear naturally as the
correlation lengths of the two-point correlation [7] of the
difference of the local A and B monomer volume frac-
tions: Y=¢ ,,—¢. We consider the symmetric case
where (y(r))=0 at scales larger than the distance be-
tween grafting points D, achieved when the 4 and B
chains are grafted in equal numbers. The static correla-
tions of the 4 —B concentration fluctuations might be
studied by neutron scattering, from A4 and B polymers
with substantially different neutron indices of refraction,
immersed in a solvent whose index of refraction was
matched to one of the polymers. This might be accom-
plished by partial deuteration of B chains to obtain the
contrast matching condition, combined with a different
degree of deuteration of otherwise identical 4 chains to
obtain 4 —B contrast. In a good solvent, the small
demixing tendency due to differing deuteration should be
predominantly screened [8].

The concentration fields ¢;(I = A4,B) are microscopi-
cally defined as a function of space r and time ¢, in terms
of chain ’s monomer positions r;(n,t), using single-chain
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density operators y,(r,t)= [ Jdn a*8*(r—r,(n,1)):

oi(r,t)=73 y(r,t) . (1)
ier
The observable that we will discuss is just the dynamic
structure factor of :
1 ’ ’
S(g,q,,0)=; [ dzdz'd’x d’x’e

27i[q-(x —x')+q,(z—2")]

X[{(r, e+ )P(r',t"))
—{Y(r, ")) {p(r',t')) ], 2)

where z and g, are the position and corresponding wave
number in the normal direction, x and g are two-
dimensional in-plane positions and wave numbers, and V
is the system volume. Using the connected correlator in
the definition of the structure factor eliminates time-
independent contributions to S due to the quenched graft
distribution.

At scales larger than D, we expect different chains to
have independent statistics, or (yi(r,t)yj(r’,t+t'))
=(7/,-(r,t’))(‘yj(r’,t’)) for |[r—r'|>D, and we may
write (2) in terms of Fourier-transformed single-chain
operators 7;(q,t) as

S(q’qz7t):_1‘ 2 (’}’/\,-(q,t-i-t')';’/\,»(—q,t'))
v all chains i
—(Pi(@t' )N {P:(—q,1")), 3)

just the sum of single-chain correlations. Thus, S(q,q,,?)
measures averaged single-chain properties at scales
beyond D.

III. MONTE CARLO SIMULATIONS
AND STRUCTURE FACTOR MEASUREMENTS

We have carried out a direct calculation of S(q,q,,?)
using Monte Carlo simulation. Previous simulation stud-
ies of the dynamics of such systems have been those of
single-chain relaxation. Murat and Grest [9], using
molecular dynamics, and Lai and Binder [10], using MC
simulation, found that the relaxation time of the poly-
mers in the z direction scales as D ~%>N3. In contrast to
these studies we study a collective property: the dynamic
scattering from the concentration difference of the two
types of monomers present in a two-component grafted
layer. In our study monomers occupy sites of a simple-
cubic lattice with lattice constant of unit, and the only in-
teraction between monomers is mutual exclusion. One
end of each chain is restricted to a particular site in the
z=0 plane, while all other monomers are restricted to the
region z=0 [11]. Since the MC moves [12] are local
(they occur at a scale <D), we expect the dynamics at
long scales (e.g., R or h) to not depend on details of the
algorithm. We expect relaxation at the scale of the corre-
lation length D to occur in the time for an object of size
np to diffuse a distance D: this “Rouse” relaxation time
is thus of order 7y~ D !!/? in units of MC steps per mono-
mer (MCS/M) [13].

In real grafted polymers (in good solvent), at scales less
than D, monomer motions are coupled by hydrodynamic
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flows of the small solvent molecules. The relaxation time
for a correlation volume is 7y=(a’y/kT)D /a)"*”3,
where 7 is the solvent viscosity [13]. At longer scales,
there are no correlations between motions of blobs due to
such flows: such hydrodynamic flows are “screened”
beyond D, as in semidilute solution. Using these con-
siderations we can translate our simulation time into real
time for grafted polymers: for D/a=35, n=0.01 poise
and a=S5 A, 1 MCS/M corresponds to 1.5 nsec of real
time.

All of our studies have been of chains grafted to a
40X 40 surface, with periodic xy boundary conditions.
We have studied seven cases, with (N,1/D?2,T) listed in
Table I, where T, is in MCS/M and is much larger than
any characteristic relaxation time. These cases cover a
range for which previous static studies have shown
“brush” scaling behavior, but which can be brought to
equilibrium in a reasonable amount of computer time. In
particular, it was previously established that the equilibri-
um layer thickness follows the scaling law
h=0.85D 3N [11].

In Fig. 1 we show a configuration from the data-taking
portion of our simulation of N =80 chains with average
intergraft distance D =5. Figure 1(a) shows only 4 of the
64 chains, which allows us to see typical single-chain
configurations. We see that some chains are concentrat-
ed near the surface, while others are quite extended.
However, the extended chains are still able to wander ap-
preciably from side to side, as they are not near their full
extension distance of N. On the other hand, the chains
are not so long that they fluctuate across the width of the
system, indicating that we should not expect spurious
correlations due to the finite area of the grafting surface.
In each case we have studied, we have chosen N and D so
that the chains are not too stretched for the scaling
theory [1] to be appropriate. In Fig. 1(b) we show all 64
chains: this picture is consistent with the notion that
there are no appreciable total density fluctuations at
scales larger than the “blob” size of order D =5 [4]. One
must choose D and L sensibly so that the separation of
scales 1 <D < L holds.

The field ¢ is constructed according to the prescription
described above, with continuum 8-functions converted
to Kronecker deltas, and continuum Fourier transforms
converted to fast Fourier transforms (FFT’s). Half of the

TABLE I. Characteristic lengths (in lattice units) A* and A
given by inverses of peak positions of scattering function scans
S(g,0,0) and S(0,q,,0), and characteristic times (in MCS/M) ¢t *
and 1% corresponding to 1/e times of the correlation functions
C(t) and C,(t), respectively.

Run N 1/D? To A* AF t* t*
(a) 50 0.04 1X10° 16.57 17.32 2135 1266
(b) 50 0.08 2X10°  15.41 19.55 2982 1820
(c) 50 0.12 4X10° 15.12 22.03 4558 3669
(d) 60 0.04 2X10° 18.38 19.44 4026 1723
(e) 80 0.04 2X10° 2290 25.76 8254 4723
(43 100 0.02 2X10° 25.13 25.57 11359 5640
(g) 100 0.04 2X10° 25.78 28.30 15022 7147
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FIG. 1. Configurations of N =80, D=5 grafted polymers
after equilibration. The dashed line indicates the 40X 40 graft-
ing surface. In (a), only 4 of the 64 chains are shown in order to
better see a few single-chain configurations. In (b), all 64 chains
are shown.

chains (chosen randomly) are type A; the other half are
type B [14]. The correlation function S can then be com-
puted according to (2): we have then averaged S over 30
such random species assignments.

At equal times, S(q,q,,t =0) is just the static structure
factor. As ¢g—0, g,—0, S(q,q,,t=0)—0 because of the
attachment of the chains to the surface: large-
wavelength fluctuations are prohibited by the large free-
energy cost of stretching the polymers more than a verti-
cal distance A or a transverse distance R from their graft-
ing positions. At large momentum, again S(q,q,,0) tends
to zero due to the relative inflexibility of the polymers on
short length scales. We thus expect peaks in S(q,q,,0) at
(g*=1/R, q,=0), and (g=0, q)~=1/h) corresponding
to the characteristic distances for single-chain fluctua-
tions in the xy plane, and in the z direction, respectively.
The vertical fluctuations are in fact appreciable because
in equilibrium, the brush in good solvent has a rather
broad free-end distribution: the same number of free
ends is expected above and below z /h =0.6.

Previously, mean-field theory [7] has been the only
source of information about S(gq,q,,0), and under a
variety of solvent conditions, it is found that
S(g*,0,0)>S(0,9),0). This is due to the static structure
being that of directed random walks: consider a contribu-
tion to the two-point function for a particular chain den-
sity ¥;. At one point r a monomer is found; the contribu-
tion at surrounding points r’ depends on the relative
orientation of r and r'. We expect the correlation to
monotonically decay with r—r’ in the z direction, over a
distance 4. However, for r—r’ in the xy plane, the chain
directedness leads to a depletion of monomer at r’ if the
chain passes through r. This depletion occurs at a scale
of the transverse radius R, and gives rise to extra spectral
power in S(g*,0,0) compared to S(0,q,%,0). This peak
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for transverse fluctuations indicates that the two-
component grafted system will have an instability toward
the formation of “microdomains” if there is a repulsive
interaction between the two species of chains; the
strength of such interactions necessary to drive a phase
transition is inversely proportional to the structure factor
peak value [7].

In Fig. 2, we show momentum scans for the static
correlations [S(q,0,0) and S(0,q,,0)] for the seven sys-
tems studied. As can be seen, there are peaks for the
(0,q,) scan, but larger peaks along (g,0), in agreement
with the argument presented above. The data are plotted
versus wave number rescaled by the characteristic trans-
verse and vertical wave numbers 1/R and 1/h; the coin-
cidence of the peak positions indicates that the charac-
teristic lengths for single-chain fluctuations indeed scale
with R and 4 in the lateral and vertical cases, respective-
ly. The characteristic lengths corresponding to the peak
positions of the static scattering are listed in Table I. The
ratios of the peak heights of the g and g, scans are similar
to the values obtained in the mean-field theory, where
S(g*,0,0)/5(0,9),0)=1.78 and 1.54 for melt and
mean-field (“marginal”) good solvent conditions [7]. The
peak heights S(q,0,0) are empirically well described by
the scaling S, =N18D ~186,

As t—o, S(q,q,,t) will decay to zero for gq
and g, less than 1/D. We can define time correlation
functions for the static peaks at g* and g¢):
C(t)=S(q*,0,t)/S(¢*,0,0) and C,(z)=S(0,q9),t)/
S(0,9%,0). A central issue concerning the dynamics of
grafted polymers is what shape these decays take. If en-
tanglements are not important, the decay times 7 and 7,
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F transverse scattering -

r 8(q,0,t=0)/S, 1

rescaled scattering intensity S/S,

0.005 — —
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B S. = N8 p-185 iy
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rescaled wave number q/q,

FIG. 2. Static scattering observed from concentration fluc-
tuations in a two-component polymer brush, (i) along ¢ =0
[S(0,q,,t=0), upper curves, vertically shifted by 0.01 for clari-
ty], and (ii) along g, =0 [S(q,0,#=0), lower curves]. In the two
cases, S has been scaled by S, =N!8D 718, wave number has
been scaled by a characteristic wave number (i)
do,,=0.5D?*N "' and (ii) go , =D "N~
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(of C and C,, respectively) may be estimated using a
Rouse [6] or free-draining diffusion approach. As men-
tioned above, the polymers relax at a scale D after a time
To, but at larger distances there are no correlations in the
total density, and hydrodynamic interactions are
screened. Each polymer can thus be divided into N /ny
correlation ‘“‘blobs” of size D. An isolated blob moves by
diffusion, with diffusion constant D?/r,. The Rouse re-
sult, namely that conformational relaxation times are
N /np times squares of distances that the chain must
move to decorrelate, divided by the blob diffusion con-
stant, may be applied to the in-plane and z-relaxation
processes. The distance that the coil must move to relax
in the xy plane is R, while in the z direction, a distance &
must be covered, indicating that 7=7o(N /ngz)(R /D )?,
and 7,=74(N /ng)(h/D)*. In the MC case, these time
scales are 7=D!>N? and 7,=D ~**N?3, and are the time
scales (in MCS/M) for a chain to relax in the xy plane,
and in the z direction, respectively [13].

In Fig. 3 we plot the correlators C, and C versus res-
caled times ¢ /7, and ¢t /T, respectively, using 7=D 1732
and 7,=D ~*N3. The z relaxation collapses well for all
the data except for case (c), which decays much more
slowly than the Rouse prediction. Similarly, the relaxa-
tion of the transverse peak collapses well for all cases ex-
cept (c); again, this case relaxes much more slowly than
the others. We conclude that the six lower-density runs
are in the regime described by the Rouse-scaling model.

rescaled time t/T,
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FIG. 3. Decays in time of dynamic scattering function at the
peak positions [(g,q,)=(0,¢,*) and (g*,0) for the z and xy
scattering, respectively] of the ¢=0 scattering function:
C,(t)=S(0,9,%,1)/5(0,¢,%,0) (upper curve, upper x axis) and
C(1)=S(g*,0,t)/S(q*,0,0) (lower curve, lower x axis). Data
for C; have been shifted upward by 1 to separate the two
curves. Symbols +, O, O, (>, ®, <, and > represent cases (a),
(b), (c), (d), (e), (N, and (g) of the text, respectively. Times in
MCS/M have been rescaled by the Rouse time scales, which for
MC dynamics and lengths corresponding to the z and xy
scattering peaks are 7,=D ~*/N?3 and 7=D!/3N?, respectively.
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The six lower-density 1/e decay times of C, are
(0.07£0.01)7,; for C, the decay times are in the range
(0.7£0.1)7.

IV. ENTANGLEMENT EFFECTS

Entanglements, or ‘“topological” barriers to relaxation
due to the impossibility of chain crossing, greatly affect
the terminal relaxation of long, interacting polymers.
Previous workers [15] have argued that for a brush with
quenched grafts, the chains will have relaxation times at
least exponential in a number of entanglements. In this
regime, the x and z relaxation times will be the same due
to the requirement that relaxation must occur by
diffusion of the free end along a specific path to the graft-
ing point, as in relaxation of arms of star polymers [16].
A simple criterion for entanglement [17] is simply that
the number of monomers in the volume occupied by a
single chain, 2R *=D ~%/*N2, is much larger than N, the
number of monomers on one chain. This condition
a=D "3/3N >>1 holds when a single chain is interacting
with many other chains, rather than mainly with itself.

For the seven cases that we have studied, this entangle-
ment index is a=(a) 3.4, (b) 6.1, (c) 8.5, (d) 4.1, (e) 5.5, (f)
3.8, (g) 6.8. By this measure, case (c) is the most entan-
gled case that we have examined, and thus we attribute
the slowing down in Fig. 3 in this case to entanglements.
We adopt the criterion a > 8 to describe the regime where
the Rouse-scaling model fails due to the chains being en-
tangled. Roughly speaking, this indicates that when
there are greater than about eight chains in sharing the
same volume with a “test” chain, the test chain will suffer
at least one entanglement. This criterion agrees very well
with that corresponding to measured entanglement
molecular weights for entangled polymer melts and solu-
tions [17].

It is interesting to note that for grafted chains, the ra-
tio of the Rouse relaxation times is 7, /7=a: this holds
in the case of both MC and real dynamics due to cancel-
lation of all factors of 7,. It follows that the criterion for
the Rouse estimate of the z correlation decay time to
exceed that for the x-y correlation decay time is (includ-
ing the prefactors reported above) a > 10. However, we
have seen that for a>8, we expect entanglement and
identical x-y and z relaxation. This suggests that for
brushes with quenched grafts, the characteristic time as-
sociated with transverse fluctuations is always greater
than or equal to that of vertical fluctuations. In Table I
we list the 1/e times of C and C,, and we note that this
inequality is observed by our data.

V. CONCLUSION

In this paper we have presented Monte Carlo calcula-
tions of static and dynamic structure factors for a poly-
mer brush composed of two species of chains, with non-
mobile, mixed grafts. We have seen that the static struc-
ture factor of the difference in concentration of the two
species agrees well with results of a self-consistent mean-
field theory [7]. This agreement follows from the scaling
result that correlations in the total density, which is re-
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sponsible for the chemical potential gradient that
stretches the chains, are screened at scales beyond D, the
mean distance between grafts on the surface. Since we
are measuring properties at scales beyond D, we expect
the results of the mean-field theory to be valid.

The structure factor peaks that we observe as a func-
tion of wave number for transverse and vertical momen-
tum transfers are due to correlations of ranges of the
chain radius, and the brush height, respectively. These
correlations arise from the connectivity of the chains, and
from the rich ensemble of chain conformations in a graft-
ed layer. Chains may fluctuate between states of different
vertical extension, leading to correlations in z over a scale
of the layer height . However, there are also transverse
fluctuations of the chains, leading to correlations in xy
over a scale of the transverse chain radius R. The
strength of these transverse correlations exceeds that of
the vertical correlations, in agreement with mean-field
calculations [7].

We have also studied the temporal decay of these
correlations by calculation of the two-time structure fac-
tor for the volume fraction difference between the two
species. We find that for a brush with sufficiently short
and sparsely grafted chains, the scaling of the charac-
teristic decay times for the transverse and vertical corre-
lations agree with estimates using scaling arguments of
Johner and Marques [13] which assume no entanglement
of the polymers. However, we observe that for our den-
sest simulation, there is very slow relaxation which ceases
to agree with the nonentangled scaling model: applica-
tion of a criterion adapted from the study of entangle-
ment of bulk polymers indicates that the polymers in that
case should have about one entanglement per chain.

For entangled polymers, one expects the transverse and
vertical relaxation times to be the same since the poly-
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mers must “reptate” along their contours to relax. For a
polymer brush under good solvent conditions, we find
that our entanglement criterion coincides exactly with
the point at which the nonentangled vertical and horizon-
tal relaxation times are equal. Consequently, the hor-
izontal chain relaxation time always is greater than or
equal to the vertical relaxation time.

Thus, since the static scattering from the transverse
fluctuations is larger than that observed from vertical
chain fluctuations, and since the decay time of the trans-
verse peak is always at least as large as that of the vertical
peak, we conclude that S(q,q,,t) for the two-component
brush is always dominated by scattering from the in-
plane chain fluctuations, in both the unentangled and en-
tangled cases. We are currently collecting data [18] for
a > 10 to study the relaxation of chains in more entangled
brushes, and also to determine the effect of repulsion of
the 4 and B chains.

Note added in proof. We have recently observed the
in-plane microphase separation predicted in Ref. [7] in
dense systems (1/D%=0.3 and 0.5, N =100) with repul-
sions between A4 and B monomers [18].
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